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Abstract. Exact solutions for the learning problem of autoassociative networks with binary
couplings are determined by a new method. The use of a branch-and-bound algorithm leads to
a substantial saving of computational time compared with complete enumeration. As a result,
fully connected networks with up to 40 neurons could be investigated. The network capacity is
found to be close to 0.83.

The training of neural networks with binary couplings is believed to belong to the class
of NP-complete problems, i.e. the average computational time required to find a solution
scales exponentially with the number of couplings to determine. This exponential scaling is
due to the discrete structure of the space of couplings and is obvious in the case of complete
enumeration. However, theoretical [1] and numerical [2] studies have shown that it also
holds for heuristic approaches (e.g. simulated annealing). Training by complete enumeration
has been carried out for small networks with up to 25 neurons [3–5]. Heuristic algorithms
[2, 6, 7] were used for networks with up to 1000 neurons. Still, the main disadvantage of
heuristic algorithms is the uncertainty about the existence of solutions not found by the
algorithm.

Our aim has been to develop an exact algorithm guaranteed to find all possible solutions
in considerably less computational time than complete enumeration. In [8], Gardner showed
that the space of interactions in neural network models can be treated in a similar way to
the phase space of spin glass models. Accordingly, it should be possible to use the branch-
and-bound method, already successfully applied to the search for ground states of an Ising
spin glass model [9, 10], for the training of neural networks with binary couplings.

Consider an autoassociative network built ofN two-state neuronssi = ±1(i = 1 . . . N)
and fully connected by binary synaptic couplings that can take on the valuesJij = ±1.
The self-couplings,Jii , should be set to zero. The task of the network would be to store a
set of patternsξµ (µ = 1 . . . p) with elementsξµi = ±1. A training procedure determines
couplings that make this pattern’s attractors of the discrete network dynamics

s
(t+1)
i = sgn

( N∑
j=1

Jij s
(t)
j

)
i = 1 . . . N. (1)

The capacity of the network specifies the number of different patterns that can be stored
simultaneously. It is normally expressed as a critical loadαc = pc/N .
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For good retrival, one is interested in large basins of attraction. As discussed in [11, 12],
these correspond to large values of the pattern stability

κµ = min
i

(
1√
N

∑
j (6=i)

ξ
µ

i Jij ξ
µ

j

)
. (2)

The maximally stable rule therefore formulates the learning problem as an optimization task.
For a given set of patterns, one has to determine an optimal set of couplings that maximizes
the network stability

κ = min
µ
(κµ). (3)

As long as there is no symmetry constraint on the matrix of couplings, the optimization task
separates into the training ofN simple perceptions withN−1 input neurons, corresponding
to the individual rows of the matrix with the self-coupling excluded. The network stability,
κ, emerges as the minimum of the ‘perception stabilities’κi .

The new learning algorithm was developed by using the branch-and-bound method, a
standard tool of the combinatorial optimization theory [13]. To find a row of the matrix of
couplings with maximal stabilityκi , complete enumeration would check the 2(N−1) possible
configurations for optimal ones. The branch-and-bound method starts with a division into
a hierarchy of subproblems: each single coupling is tested with both possible values yet
taking into account the state of the previously (on a trial basis) determined couplings, thus
forming a binary tree of ‘incomplete’ configurations. Only the final level of the tree would
contain the ‘complete’ solutions. This division is the ‘branching’ part of the algorithm.
Standing alone it would double the neccesary computational time. Here the ‘bounding’
(and subsequently cutting) part comes into action: for each node of the binary tree an upper
bound for the best possible solution of the remaining subproblem is evaluated. The starting
point is an ideal stability,κid = N − 1, which is obtained if one takes all terms in the sum
(2) to be positive. (Generally, the maximal stability lies below this ideal stability which
can only be achieved if there is just one pattern to store.) When testing a couplingJij , this
bound will be corrected, taking into account the already-fixed part of the configuration. If
it falls under a preset value, for example the stability attained by using the clipped Hebb
rule, the binary tree is ‘cut’ at this node, i.e. the subtree of this node does not need to
be considered. As a result, only a small percentage of the nodes has to be checked. For
N = 25 we found that only 10−4–8% of the nodes were evaluated, depending on, e.g. the
number of patterns to store.

Assuming that the evaluation of a node of the binary tree is approximately as
time consuming as checking one possible configuration during complete enumeration, a
comparision of these two methods has been done. As predicted by theory, we still have
an exponential scaling of the algorithm. However, if we set the loadα = p/N–0.5 and
look for one solution with positive stability, the algorithm no longer scales with 2N but
with 20.46N . In the (worst) case of determining all optimal solutions atα = 1, the scaling
is 3× 20.8N . (That would mean that the algorithm still optimizes a 30-neuron network in
approximately the computational time needed for the complete enumeration of a 25-neuron
network.)

We used the branch-and-bound algorithm to determine the capacity of the network
storing random uncorrelated patterns. Only one row of the coupling matrix was considered
assuming the stability value to be self-averaging in the thermodynamic limit (cf [8, 3]).

The procedure resembles the one used in [4]. For a given value ofN , the stability
κN(α) is determined for an increasing number of patterns until its value becomes negative,
signifying that it is no longer possible to store all patterns. Then the capacityαc(N)
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Figure 1. Network capacity in the case of random uncorrelated±1-patterns

Figure 2. Network capacity in the case of continuous distributed patterns

is determined by linear interpolation between the last positiveκN(α+) and the negative
κN(α−). If the patterns are binary-valued,ξµi = ±1, κN(α) takes on discrete values with a
spacing of 2/

√
N . ForN odd, this discreteness results in two values ofαc(N) corresponding

to the first and last occurence ofκN(α) = 0. This procedure was carried out for networks
with N = 4 . . .40. To reduce finite size (discretization and parity) effects, we also used
continuous distributed patterns (cf [3]). We considered a normalized Gaussian distribution
as well as patterns with elements evenly distributed in the interval−1 6 ξ

µ

i 6 +1 (box
constraint) to examine the influence of the pattern distribution. Figures 1 and 2 show the
dependence of this capacity on the network size as well as on the nature of the patterns. The
error bars correspond to twice the mean deviation of the average value (statistical error).
Sample size varied between 10 000 for small systems and 100 forN = 40. The±1-patterns
exhibit a strong parity effect which should, however, vanish in the thermodynamic limit. In
figure 2, the values for the Gaussian patterns show a periodicity which is probably a result
of the linear interpolation as the period of 6 corresponds to the passing of the zero-line of
a stability valueκN(α). (Remember that the critical capacity is approximately5

6 andα is
restricted to rationalsN/p.) Quadratic fits are given as a guideline to the eye (cf [4]).

There is no scaling theory for this problem, however, our numerical data suggest that
the extrapolation toN →∞ could not be a linear one. A tentative quadratic extrapolation
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yields αc = 0.834 for Gaussian distributed patterns,αc = 0.832 for the box constraint and
αc = 0.827 for±1-patterns andN even. In the case of±1-patterns andN odd, a quadratic
fit is clearly unadmissible.

A second approach followed the procedure by Krauth and Opper [3] to determine
κα(N) for different values ofα and a subsequent extrapolation toN → ∞. The capacity
for Gaussian distributed patterns is determined asαc = 0.833.

We aimed to examine the possibilites and limits of combinatorial optimization when used
for the training of autoassociative neural networks with binary couplings. The developed
branch-and-bound algorithm allowed us to extend the exact investigation to systems with up
to 40 neurons. We were not able to leave the region of strong finite size effects but could
confirm theoretical [14] and numerical [3, 4] studies with additional numerical evidence.
The possibility to determine all solutions of the learning problem also opens the way for
an analysis of the space of solutions similar to the one already done for the ground states
of the Ising spin glass model [10].
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